Draft System

1.10 Draft System

The function of draft in a combustion system is to exhaust the products of combustion into the atmosphere. The draft can be classified into two types namely Natural and Mechanical Draft.

Natural Draft

It is the draft produced by a chimney alone. It is caused by the difference in weight between the column of hot gas inside the chimney and column of outside air of the same height and cross section. Being much lighter than outside air, chimney flue gas tends to rise, and the heavier outside air flows in through the ash pit to take its place. It is usually controlled by hand-operated dampers in the chimney and breeching connecting the boiler to the chimney. Here no fans or blowers are used. The products of combustion are discharged at such a height that it will not be a nuisance to the surrounding community.

Mechanical Draft

It is draft artificially produced by fans. Three basic types of drafts that are applied are :

Balanced Draft:

Forced-draft (F-D) fan (blower) pushes air into the furnace and an induced- draft (I-D) fan draws gases into the chimney thereby providing draft to remove the gases from the boiler. Here the pressure is maintained between 0.05 to 0.10 in. of water gauge below atmospheric pressure in the case of boilers and slightly positive for reheating and heat treatment furnaces.

Induced Draft

An induced-draft fan draws enough draft for flow into the furnace, causing the products of combustion to discharge to atmosphere. Here the furnace is kept at a slight negative pressure below the atmospheric pressure so that combustion air flows through the system.

Forced Draft

The Forced draft system uses a fan to deliver the air to the furnace, forcing combustion products to flow through the unit and up the stack.

1.11 Combustion Controls

Combustion controls assist the burner in regulation of fuel supply, air supply, (fuel to air ratio), and removal of gases of combustion to achieve optimum boiler efficiency. The amount of fuel supplied to the burner must be in proportion to the steam pressure and the quantity of steam required. The combustion controls are also necessary as safety device to ensure that the boiler operates safely.

Various types of combustion controls in use are:

On/Off Control

The simplest control, ON/OFF control means that either the burner is firing at full rate or it is OFF. This type of control is limited to small boilers.

High/Low/Off Control

Slightly more complex is HIGH/LOW/OFF system where the burner has two firing rates. The burner operates at slower firing rate and then switches to full firing as needed. Burner can also revert to low firing position at reduced load. This control is fitted to medium sized boilers.

Modulating Control

The modulating control operates on the principle of matching the steam pressure demand by altering the firing rate over the entire operating range of the boiler. Modulating motors use conventional mechanical linkage or electric valves to regulate the primary air, secondary air, and fuel supplied to the burner. Full modulation means that boiler keeps firing, and fuel and air are carefully matched over the whole firing range to maximize thermal efficiency.